Oportunidades de Investigación Públicas

30-04-2024 Caracterización de eventos de oleaje extremo y su influencia en lagunas costeras – analisis de serie de tiempo
Este proyecto tiene como objetivo investigar los efectos de eventos de olas extremas en estuarios, lagunas y humedales en Chile central. Estos eventos, caracterizados por marejadas durante las mareas altas de sizigia, aumentan el volumen de agua y alteran la morfología de las lagunas costeras. Como resultado, las olas oceánicas pasan por encima de las barras de arena de las playas, introduciendo agua salada y sedimentos en las lagunas, lo que provoca diversos impactos físicos e hidrodinámicos, como inundaciones costeras y cambios en la estratificación de la salinidad y los niveles de oxígeno disuelto. El proyecto se centrará en el análisis de series de tiempo de datos (nivel del agua, marea, oleaje) de sitios en Chile Central (Cahuil, Pichicuy, Ligua-Petorca). Los resultados esperados incluyen determinar las condiciones en las que se producen estos eventos y analizar sus caudales episódicos.Es probable que durante el proyecto haya oportunidades para ayudar en trabajo en terreno.
Prerequisitos:  ICH1104

Tiene un método de evaluación Nota 1-7, con 10 créditos y tiene 1/1 vacantes disponibles

Mentor(es): Ver en la plataforma

Public Research Opportunities

30-04-2024 Characterizing extreme wave events and their influence on central Chilean estuaries, lagoons, and wetlands - time series analysis
This undergraduate research projects will study the influence of extreme wave events in coastal estuaries, lagoons, and wetlands. Large waves (marejadas) that occur during spring high tides are observed to increase the water volume and change the morphology of coastal lagoons. During these events, oceanic waves pass over the beach sandbar and bring salt water and sediment into the lagoons. Physical and hydrodynamic impacts include coastal flooding, changes to salinity stratification and dissolved oxygen. Quantifying conditions and impact of these events will be carried out using time series analysis using data (e.g., estuarine water level, tide, wave) from sites in Central Chile (Cahuil, Pichicuy, Ligua-Petorca) and California (Pescadero). Expected outcomes include: a parameterization of when these events occur, and an analysis of the episodic flow rates. There will likely be opportunities to assist with field data collection during in the Central Chilean sites.
Prerequisites:  ICH1104

Evaluation method: Nota 1-7, with 1/1 available vacants

Mentor(s): Open in the plataform
26-12-2022
Prerequisites:  IMT2113

Evaluation method: Nota 1-7, with 0/1 available vacants

Mentor(s): Open in the plataform
29-10-2021 Multiresolution analysis and superresolution
Multiresolution analysis consists in constructing a filtration of L2 of closed subspaces Vj such that each one represents functions at a scale 2j. The ortogonal projection onto Vj represents the approximation at scale 2j whereas the difference between the projections onto Vj and Vj+1 represents the details at scale 2j. A typical signal distortion process consists in removing structure at small scales. This is modeled through convolutions and resampling. Is it possible to leverage multiresolution analysis to recover the missing details? In this case we do not want to solve the problem for any function, thus constraining the worst-case, but only for those that are of interest and have been distorted by the process under study. The goal of this iPre is to review the existing literature connecting multiresolution analysis with this problem, and to propose a mathematical model that would allow us to answer this question.
Keywords:       análisis de fourier superresolución
Prerequisites:  IMT2113

Evaluation method: Nota 1-7, with 0/1 available vacants

Mentor(s): Open in the plataform
08-04-2021 Mathematical methods for the deconvolution problem
One of the main properties of an optical system is its resolution. This is defined as the minimum separation between two ideal point sources so that they can be distinguished from one another when observed through the system. In practice, the diffraction of light imposes a physical limit to the resolution of the system. For a linear system, this process is typically modeled by a convolution by the Point Spread Function (PSF). For this reason, a technique that improves the resolution of the system can be interpreted as a deconvolution method. The objective of this project is to study mathematical methods proposed in the literature in the past decade, which combine applied Fourier analysis, convex optimization, and probability, for which there exists conditions that ensure they solve the superresolution problem in a computationally efficient manner.
Prerequisites:  IMT2113

Evaluation method: Nota 1-7, with 0/1 available vacants

Mentor(s): Open in the plataform